LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – MATHEMATICS THIRD SEMESTER – APRIL 2023

UMT 3501 – ABSTRACT ALGEBRA

Dept. No. Date: 02-05-2023 Max.: 100 Marks Time: 01:00 PM - 04:00 PM SECTION A Answer ALL the Questions Answer the following: $(5 \times 1 = 5)$ 1. Define equivalence class of an element in the set. K1 CO1 a) b) Recall order of an element in the group. K1 CO1 Given two groups G and G', name an example for homomorphism existing between G K1 CO1 c) and G'. State the Pigeonhole principle. CO1 d) K1 Define Maximal ideal of ring R. K1 CO1 e) $(5 \times 1 = 5)$ 2. Fill in the blanks Two integers a and b are relatively prime if K1 CO1 a) K1 The center of a group is defined as Z(G) =CO1 b) A permutation is said to be even if CO1 K1 c) Two elements a and b are said to be zero-divisors in ring R if CO1 d) K1 Let R be a commutative ring with unit element. Two elements $a, b \in R$ are said to be CO1 K1 e) associates if 3. Choose the correct answer for the following $(5 \times 1 = 5)$ The greatest common divisor of 1128 and 33 is identified as K2 CO1 a) (i) 3 (iii) 1 (iv) 5 (ii) 2 If a group G has no non-trivial subgroups, then G is classified as K2 CO1 b) (i) non-abelian. (ii) cyclic. (iii) abelian but not cyclic. (iv) cyclic but not abelian. K2 CO1 Let $\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4 \end{pmatrix}$. Identify the orbits of 1 and 4. c) (i) $o(1) = \{1,3\} \& o(4) = \{2,4,5,6\}$ (ii) $o(1) = \{1,2\} \& o(4) = \{3,4,5,6\}$ (iii) $o(1) = \{3,4,5\} \& o(4) = \{1,2\}$ (iv) $o(1) = \{1,2\} \& o(4) = \{4,5,6\}$ If U is an ideal of R and $1 \in U$ then identify the right answer K2 CO1 d) (i) U = R(ii) $U \subset R$ (iii) $R \subset U$ (iv) $U = \{1\}$. Identify the Encoded message for DOJHEUD using Caesar's Cipher. e) (ii) ABELIAN (iii) ABSTRACT (iv) CYCLIC (i) ALGEBRA 4. Say TRUE or FALSE $(5 \times 1 = 5)$ Every element a in group G has an unique inverse in G. K2 CO1 a) A subgroup N is normal in group G if and only if $gng^{-1} = n$ for all $g \in G$ and $n \in N$. b) K2 CO1 Kernel of a homomorphism between groups G and G', is a normal subgroup of G. K2 CO1 c) CO1 The homomorphism between rings R and R', maps multiplicative identity (unit K2 d) element) of R to multiplicative identity (unit element) of R'.

e)	A Euclidean ring need not possess a unit element.	K2	CO1
	SECTION B		
Answer	r any TWO of the following	(2 x 10) = 20)
5.	If a and b are integers, not both 0, then show that gcd(a,b) exists. Moreover,	K3	CO2
	demonstrate that we can find integers m_0 and n_0 such that $gcd(a,b) = m_0a + n_0b$.		
6.	Illustrate "If G is a group, then set of all automorphisms on G is a group" with proof.	K3	CO2
7.	Produce the proof for statement "a finite integral domain is a field".	K3	CO2
8.	Demonstrate about Public key cryptosystem.	K3	CO2
	SECTION C		
Answer	r any TWO of the following	(2 x 10	0 = 20)
9	 Analyze the following statement and explain the proof. (a) A non-empty subset H of the group G is a subgroup of G if and only if (5 Marks) (i) a,b ∈ H implies that ab ∈ H and (ii) a ∈ H implies that a⁻¹∈ H. Analyze the following statement and explain the proof. (b) If H is a nonempty finite subset of a group G and H is closed under the operation of G, then H is a subgroup of G. 	-	CO3
10.	Explain how any group structure is comparable, using Cayley's theorem, with the proof.	K4	CO3
11.	Explain the proof for the following statements. If R is a ring, then for all a,b in R. Then point out that (i) $a.0 = 0.a=0$ (ii) $a.(-b)=(-a).b=-(ab)$ (iii) $(-a)(-b)=ab$ If in addition, R has a unity 1. Then infer that (iv) $(-1)(a) = -a$ (v) $(-1)(-1)=1$	K4	CO3
12.	If R is a commutative ring with unity and M is an ideal of R, then infer that M is a maximal ideal of R if and only if R/M is a field.	K4	CO3
	SECTION D		
Answer	r any ONE of the following	(1 x 2(0 = 20
13.	Defend Lagrange's Theorem by providing a suitable proof. Given order of the group $G = 32$ and $G'=21$. Using Lagrange's theorem, list all the possible order of subgroups for the groups G and G'.	K5	CO4
14(a).	Convince that "any positive integer $\alpha > 1$ can be factored in a unique way as $p_1^{\alpha_1}.p_2^{\alpha_2}p_t^{\alpha_t}$, where $p_1 > p_2 > > p_t$ are prime numbers and where each $\alpha_i > 0$ by providing a suitable proof. (12 Marks)	K5	CO4
14(b).	Produce a condition on an element in a Euclidean ring to form as an unit and construct a proof to support your condition. (8 Marks)		
	SECTION E		
Answer	r any ONE of the following	(1 x 20)=20
15.	Compare the proof of fundamental theorem of homomorphism in groups with the fundamental theorem of homomorphism in rings.	K6	CO5
16(a). 16(b).	Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then construct the proof showing that R is a field. (6 Marks) In an Euclidean ring, every ideal is generated by an element say a_0 . Now, produce a condition on a_0 such that the ideal generated by it is an maximal ideal and construct the proof to support your condition. (14	- K6	COS

Marks)				
		\$\$\$\$\$\$\$	 	