LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2023
UMT 3501 - ABSTRACT ALGEBRA
Date: 02-05-2023
Dept. No.
Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

SECTION A

Answer ALL the Questions

1. Answer the following:
a) Define equivalence class of an element in the set.

K 1	CO 1
K 1	CO 1

2. Fill in the blanks
a) Two integers a and b are relatively prime if \qquad
b) The center of a group is defined as $Z(G)=$

c) A permutation is said to be even if \qquad .
d) Two elements a and b are said to be zero-divisors in ring R if
e)

Let R be a commutative ring with unit element. Two elements $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ are said to be
e) associates if \qquad .
3. Choose the correct answer for the following
a) The greatest common divisor of 1128 and 33 is identified as
(i) 3
(ii) 2
(iii) 1
(iv) 5
b) If a group G has no non-trivial subgroups, then G is classified as

K2 CO 1
(i) non-abelian.
(ii) cyclic.
(iii) abelian but not cyclic.
(iv) cyclic but not abelian.

Let $\theta=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4\end{array}\right)$. Identify the orbits of 1 and 4 .
c)
(i) $o(1)=\{1,3\} \& o(4)=\{2,4,5,6\}$
(ii) $o(1)=\{1,2\} \& o(4)=\{3,4,5,6\}$
(iii) $o(1)=\{3,4,5\} \& o(4)=\{1,2\}$
(iv) $o(1)=\{1,2\} \& o(4)=\{4,5,6\}$
d)

If U is an ideal of R and $1 \in U$ then identify the right answer
(i) $U=R$
(ii) $U \subset R$
(iii) $\mathrm{R} \subset \mathrm{U}$
(iv) $\mathrm{U}=\{1\}$.
e)
(i) ALGEBRA
(ii) ABELIAN
(iii) ABSTRACT
(iv) CYCLIC
4. Say TRUE or FALSE
a) Every element a in group G has an unique inverse in G.
b) A subgroup N is normal in group G if and only if $g n g^{-1}=n$ for all $g \in G$ and $n \in N$.
c) Kernel of a homomorphism between groups G and G^{\prime}, is a normal subgroup of G .
d) The homomorphism between rings R and R ', maps multiplicative identity (unit element) of R to multiplicative identity (unit element) of R'.
element) of R to multiplicative identity (unit element) of R'.

K 2	CO 1	
K 2	CO 1	
K 2	CO 1	
	K 2	CO 1

e) A Euclidean ring need not possess a unit element.

SECTION B

Answer any TWO of the following
$(2 \times 10=20)$

SECTION C

Answer any TWO of the following
$9 \quad$ Analyze the following statement and explain the proof.
(a) A non-empty subset H of the group G is a subgroup of G if and only if (5 Marks)
(i) $a, b \in H$ implies that $a b \in H$ and (ii) $a \in H$ implies that $a^{-1} \in H$.

K4 CO3
Analyze the following statement and explain the proof.
(b) If H is a nonempty finite subset of a group G and H is closed under the operation of G, then H is a subgroup of G.
(5 Marks)
10. Explain how any group structure is comparable, using Cayley's theorem, with the proof.
11. Explain the proof for the following statements.

If R is a ring, then for all a, b in R. Then point out that
(i) a. $0=0 . a=0$
(ii) a. $(-b)=(-a) \cdot b=-(a b)$
(iii) $(-a)(-b)=a b$

If in addition, R has a unity 1 . Then infer that
(iv) $(-1)(a)=-a$
(v) $(-1)(-1)=1$
12. If R is a commutative ring with unity and M is an ideal of R, then infer that M is a K 4 CO3 maximal ideal of R if and only if R / M is a field.

SECTION D

Answer any ONE of the following
13. Defend Lagrange's Theorem by providing a suitable proof. Given order of the group G
13. $=32$ and $G^{\prime}=21$. Using Lagrange's theorem, list all the possible order of subgroups for the groups G and G^{\prime}.

Convince that "any positive integer $\alpha>1$ can be factored in a unique way as
14(a). $p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \ldots p_{t}^{\alpha_{t}}$, where $p_{1}>p_{2}>\cdots>p_{t}$ are prime numbers and where each $\alpha_{i}>0$ by providing a suitable proof.
(12 Marks)
Produce a condition on an element in a Euclidean ring to form as an unit and construct a proof to support your condition.
(8 Marks)

K 5	CO 4	
K 5	CO 4	

SECTION E

Answer any ONE of the following

15.

Compare the proof of fundamental theorem of homomorphism in groups with the fundamental theorem of homomorphism in rings.
16(a). Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then construct the proof showing that R is a field.
16(b). In an Euclidean ring, every ideal is generated by an element say a_{0}. Now, produce a condition on a_{0} such that the ideal generated by it is an maximal ideal and construct the proof to support your condition.

